Supporting Information

Novel MOF Shell-Derived Surface Modification of Li-Rich Layered Oxide Cathode for Enhanced Lithium Storage

Zhitong Xiao,¹ Jiashen Meng,¹ Qi Li,¹ Xuanpeng Wang,¹ Meng Huang,¹ Ziang Liu,¹ Chunhua Han^{1,*} and Liqiang Mai^{1,2,*}

Fig. S1 A comparison of reversible capacity and operating voltage ranges of the typical lithium-containing cathode materials. The energy density is calculated on the basis of the voltage versus metallic lithium for simplicity.

Fig. S2 (a-c) SEM images of LLO, LLO@MOF and LLO@C&NiCo, respectively.

Fig. S3 FT-IR spectra of LLO, LLO processed by low-pressure vapor superassembly at 150 $^{\circ}$ C for 8 h, and at 200 $^{\circ}$ C 4 h, together with a control sample MOF samples.

Fig. S4 (a) N_2 adsorption/desorption isotherm and (b) the corresponding pore size distribution of LLO and LLO@MOF.

Fig. S5 TEM images of LLO@C&NiCo.

Fig. S6 (a) HRTEM image and (b) TEM mapping images of LLO.

Fig. S7 SEM elemental mapping images of LLO@C&NiCo.

Fig. S8 CV curves of the first four cycles at the scan rate of 0.2 mV s⁻¹ of LLO (a) and LLO@C&NiCo (b) in the 2.0-4.8 V range.

Fig. S9 The charge-discharge voltage profiles of the LLO (a) and LLO@C&NiCo (b) at different current densities.

Fig. S10 I-V curves of LLO and LLO@C&NiCo.

Table S1. Electrochemical performance comparison of various modified Li-rich layered oxide

cathodes.

Li-rich layered oxide cathode	Voltage range (V)	Current density (mA g ⁻¹)	Cycle number	Residual capacity (mAh g ⁻¹)	Capacity retention	Reference
LLO@C&NiCo	2-4.8	100	100	270	95%	Our work
		500	300	178	90%	
Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ used CMC	2-4.8	200	500	178	79%	S 1

binder						
Concentration-gradient PO ₄ ³⁻ polyanion doped LLO	2-4.8	100	400	228.5	88.2%	S2
3D hollow hierarchical structure LLO	2-4.8	125	200	225	89.5%	S3
Fusiform porous micro-nano structure LLO	2-4.6	125	200	256.78	87.1%	S4
Full microwave synthesized LLO	2.5-4.8	200	100	197.2	83.3%	S5
Spherical core-shell structure Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ @Li _{1.2} Ni _{0.4} Mn _{0.4} O ₂	2-4.8	200	100	175	93.1%	S6
Spinel-structure skin and ferric oxide islands coated LLO	2-4.8	250	150	200	80%	S7
0.5 Li ₂ MnO ₃ 0.5 LiNi _{0.8} - Co _{0.1} Mn _{0.1} O ₂ (LL-811) cathode	2-4.7	50	100	195	92%	S8
PEDOT:PSS conducting polymer coated LLO	2-4.8	250	100	146.9	80%	S9
Li ₂ ZrO ₃ coated LLO	2.5-4.8	250	100	162	83.5%	S10

References

- Zhang S, Gu H, Pan H, et al. A novel strategy to suppress capacity and voltage fading of Li-and Mn-rich layered oxide cathode material for lithium-ion batteries. Adv Energy Mater 2017; 7:1601066.
- Hou P, Li G, Gao X. Tailoring atomic distribution in micron-sized and spherical Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. J Mater Chem A 2016; 4:7689-7699.
- Yu F, Que L, Wang Z, et al. Layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures for high performance Li-ion battery cathodes. J Mater Chem A 2016; 4:18416-18425.

- Wang G, Wang X, Yi L, et al. Preparation and performance of 0.5Li₂MnO₃ 0.5LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ with a fusiform porous micro-nano structure. J Mater Chem A 2016; 4:15929-15939.
- Shi S, Zhang S, Wu Z, et al. Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries. J Power Sources 2017; 337:82-91.
- Chong S, Wu Y, Chen Y, et al. A strategy of constructing spherical core-shell structure of Li_{1.2}Ni_{0.2}Mn_{0.6}O₂@Li_{1.2}Ni_{0.4}Mn_{0.4}O₂, cathode material for high-performance lithium-ion batteries. J Power Sources 2017; 356:153-162.
- Chen S, Zheng Y, Lu Y, et al. Enhanced electrochemical performance of layered lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands. ACS Appl Mater Interfaces 2017; 9:8669-8678.
- Shi J, Zhang J, He M, et al. Mitigating voltage decay of Li-rich cathode material via increasing Ni-content for lithium-ion batteries. ACS Appl Mater Interfaces 2016; 8:20138-20146.
- Wu F, Liu J, Li L, et al. Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT:PSS conducting polymer. ACS Appl Mater Interfaces 2016; 8:23095-23104.
- Zhang J, Zhang H, Gao R, et al. New insights into the modification mechanism of Li-rich Li_{1.2}Mn_{0.6}Ni_{0.2}O₂ coated by Li₂ZrO₃. Phys Chem Chem Phys 2016; 18:13322-13331.