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Table S1. Comparison with other vanadium oxide cathode electrode, major focusing on the mass loading level and rate capability. 
	Samples
	Loading level (mg cm-2)
	Rate capability (mAh g-1 at A g-1)
	Potential (V)
	Citations

	H2V3O8 hydrogels/CNTs
	3.1

13
	313.3 at 0.1
143.8 at 12
295.6 at 0.1
127.3 at 2
	1.5-3.5
	Our work

	V2O5 nanowires-graphene
	~1.0
	414.4 at 0.1
255.5 at 10
	1.7-3.8
	[1]

	Hierarchical porous V2O5 nanofibers
	2.0
	276.3 at 0.1
50.3 at 3
	2.0-4.0
	[2]

	[bookmark: OLE_LINK34]VO2 nanoribbons/graphene
	1.2
	141 at 0.16
54 at 1.12
	2.0-3.5
	[3]

	Porous V2O5 nanosheets
	2.0
	142.1 at 0.0734
88.6 at 1.176
	2.5-4.0
	[4]

	[bookmark: OLE_LINK20][bookmark: OLE_LINK30]V2O5 nanobelt arrays
	1.0~2.0
	146 at 0.0734
87 at 2.352
	2.5-4.0
	[5]

	VO2@Graphene Quantum Dots nanoarrays
	0.6
	421 at 0.1
151 at 36
	1.5-3.5
	[6]
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Figure S1. XPS Li 1s spectrum of H2V3O8 hydrogels.
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Figure S2. (a) TEM and HRTEM (inset a) images of H2V3O8 NWs. (b) AFM image of a NW.
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Figure S3. Time-dependent experiments of the formation process for hydrogels. (a) Photograph of the products obtained at various hydrothermal reaction times. SEM images of the products with a hydrothermal reaction time of 12 h (b), 24 h (c), 48 h (d), 96 h (e) and 120 (h), respectively.





[image: ]
Figure S4. Time-dependent experiments of the formation process for NWs. (a) Photograph of the products obtained at various hydrothermal reaction times. SEM images of the products with a hydrothermal reaction time of 12 h (b), 24 h (c), 48 h (d), and 120 (e), respectively.
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Figure S5. The influence of the pre-added amount of Li2CO3 for the finial morphology. (a) XRD patterns. (b-f) The morphology of the samples with different amount of Li2CO3: 0 mmol (b), 0.1 mmol (c), 0.25 mmol (d), 0.5 mmol (e), and 1.0 mmol (f), respectively. 
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Figure S6. The SEM images, photographs, EDX spectra of the samples with the addition of Na2CO3 (a), K2CO3 (b), MgCl2 (c), MnCO3 (d), CuCl2 (e), and NH4Fe(SO4)2 (f), respectively.
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[bookmark: _Hlk482028363][bookmark: OLE_LINK10]Figure S7. XRD patterns of the samples with the addition of MgCl2, MnCO3, NH4Fe(SO4)2 and CuCl2. The slight shift to lower angle of the peaks may be due to the pre-intercalated cations into the vanadium oxide layers.
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Figure S8. Characterization and electrochemical performance of pure ultrthin nanoribbons. SEM (a), TEM (b), HRTEM (c) images, nitrogen adsorption/desorption curve (d) and XRD pattern (e) of pure ultrathin nanoribbons. (f) Schematic of the self-stacked nanoribbons. The SEM and TEM images show the stacked ultrathin nanoribbons, the nitrogen adsorption/desorption curve indicates no porous structure, and further the XRD pattern shows very strong order multiple reflections, demonstrating the self-stacked behavior of nanoribbons.  Charge-discharge curve at 0.1 A g−1 at 1.5-3.5 V (g), rate performance (h) and cycling performance at 1.0 A g−1 (i). The charge-discharge curve is different from the H2V3O8 NWs, which may be due to the ultrathin feature of the nanoribbons that with more surface atoms and less layers. The unsatisfied electrochemical performance is owing to the self-stacked nanoribbons that without any spacing between themselves, which enhances the resistance and limits ion/electron diffusion.
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Figure S9. EIS analysis. The Nyquist plots of the (a) H2V3O8 hydrogels and (b) NWs after various cycles, respectively. (c) The fitting equivalent circuit. (d) Z' vs. ω−1/2 plots. The diffusion coefficient values of the Li+ ions (D) can be calculated based on the EIS spectra by using the Equations 1 and 2. Based on the Equation 2, the linear fitting of Z' and ω-1/2 is displayed in d. From the fitting results, the σ value can be calculated for the slope. The smaller Warburg factor (σ) indicates higher diffusion coefficient values (D), which demonstrates the faster and more stable Li+ ion diffusion kinetics for the hydrogels.
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Figure S10. CV curves of hydrogels (a) and NWs (b) at various scan rates, respectively. CV curves of H2V3O8 hydrogels (c) and NWs (d) at a scan rate of 1 mV s–1, respectively. The shaded area represents capacitive contribution. 
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Figure S11. (a, b) SEM images of H2V3O8 hydrogels/CNTs.
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Figure S12. (a) Photograph of the hydrogels/CNTs film. (b) Cross-section SEM image of hydrogels/CNTs film.
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[bookmark: OLE_LINK46][bookmark: OLE_LINK47]Figure S13. (a) SEM image of NWs/CNTs composites. (b) Cross-section SEM image of NWs/CNTs films. The ununiformed distribution of CNTs with NWs is not ideal to provide effective electron transport. 
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Figure S14. XRD patterns (a) and Raman spectra (b) of the hydrogels/CNTs film. 
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Figure S15. Electrochemical performance of CNTs tested at the potential window of 1.5 to 3.5 V. (a) Cycling performance at 0.1 and 1.0 A g-1. (b) The charge-discharge curves at 0.1 A g-1.
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[bookmark: _Hlk482038063]Figure S16. Charge-discharge curves and corresponding overpotentials of hydrogels/CNTs and NWs/CNTs at 0.1 A g–1.
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Figure S17. (a) SEM image and (b) rate performance of hydrogels/acetylene black film. The dispersive acetylene black nanoparticles is unable to provide continuous electron transport, thus leading to poor rate performance.
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Figure S18. The cycling performance of the hydrogels/CNTs films with different mass loading at the charge and discharge specific current of 4.0 A g-1.
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Figure S19. SEM image of H2V3O8 hydrogels/CNTs after 1000 cycles at 4.0 A g-1.
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[bookmark: _Hlk482110075]Figure S20. Reversibility and durability testing of the flexible H2V3O8/CNTs pouch cell. (a) The charge-discharge curves of pouch cell at initial, folded and unfolded states. The photograph of pouch cell lighting the LED at initial (b), folded (c), and unfolded (d) states.
[bookmark: _Hlk481409654]
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