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 ABSTRACT 

Sodium-ion batteries (SIBs) have great promise for sustainable and economical 

energy-storage applications. Nevertheless, it is a major challenge to develop 

anode materials with high capacity, high rate capability, and excellent cycling

stability for them. In this study, FeSe2 clusters consisting of nanorods were 

synthesized by a facile hydrothermal method, and their sodium-storage properties

were investigated with different electrolytes. The FeSe2 clusters delivered high 

electrochemical performance with an ether-based electrolyte in a voltage range 

of 0.5–2.9 V. A high discharge capacity of 515 mAh·g–1 was obtained after 400 cycles

at 1 A·g–1, with a high initial columbic efficiency of 97.4%. Even at an ultrahigh 

rate of 35 A·g–1, a specific capacity of 128 mAh·g–1 was achieved. Using calculations,

we revealed that the pseudocapacitance significantly contributed to the sodium-ion

storage, especially at high current rates, leading to a high rate capability. The 

high comprehensive performance of the FeSe2 clusters makes them a promising 

anode material for SIBs. 

 
 

1 Introduction 

Currently, electrical energy storage plays an important 

role in our daily lives. As efficient energy-storage 

devices, lithium-ion batteries (LIBs) are widely used 

in portable devices and are expected to power electric 

vehicles owing to their high energy density and long 

cycle life [1–3]. However, concerns regarding the 

limited resources and growing cost of lithium have 

prompted researchers to seek alternative solutions for 

sustainable energy storage [4, 5]. Recently, sodium-ion 

batteries (SIBs) have attracted considerable attention 

as a substitute for LIBs because of their low cost and 

natural abundance [6–12]. Many cathode materials, such 

as Na3V2(PO4)3 [13], Na1.25V3O8 [14], Na2Fe2(SO4)3 [15], 

and Prussian blue materials [16], have been inves-

tigated for SIBs. SIB cathode materials have exhibited 

remarkable performances [13–15]. Nevertheless, it is 

a major challenge to develop high-performance anode 

materials for SIBs.  
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To date, SIB anode materials based on intercalation 

[17–21], alloying [22–25], and conversion reactions 

[26–28] have been proposed. Materials with insertion– 

extraction mechanisms exhibit good cycling perfor-

mance, but their specific capacity is not high [17, 18]. 

Thus, considerable attention has been paid to high- 

capacity anode materials with alloying and conversion 

mechanisms. Among these, transition metal sulfides 

and selenides have attracted significant attention owing 

to their low cost, high capacity, and environmental 

benignity [11, 29–34]. Previous studies have focused 

on the fabrication of carbon-assisted composites to 

improve the electrochemical performance [31, 32]. 

However, carbon materials exhibit a low tapping density, 

which leads to a low practical volumetric energy 

density. Therefore, it is necessary to explore novel 

strategies for developing high-performance transition 

metal sulfides and selenides without introducing 

conductive carbon materials. FeSe2 has been extensively 

studied in a variety of fields, e.g., those concerning 

solar cells [35], absorption [36] and electromagnetics 

[37], owing to its environmental benignity, low cost, 

and good conductivity. Chen et al. synthesized FeSe2 

microspheres and used them for the first time as an 

SIB anode [38]. The FeSe2 anode delivered a stable 

discharge capacity of 372 mAh·g–1 at 1 A·g–1. However, 

the specific capacity and rate performance of the FeSe2 

SIB anode needs to be further enhanced. 

Three-dimensional (3D) structures composed of 

sub-nanostructures have attracted attention as efficient 

electrode configurations [39–41]. They can not only 

reduce the ion diffusion length but also mitigate the 

self-aggregation of low-dimensional nanostructures; 

thus, they are used to enhance the electrochemical 

performance of batteries [39]. In addition, pseudo-

capacitive charge storage is beneficial for achieving  

a high rate capability [42–44]. Huang et al. [43] 

demonstrated that the Na+ intercalation pseudo-

capacitance in graphene-coupled titanium oxide 

yielded a high rate capability and long cycle life    

in SIBs. Thus, it is desirable to obtain SIBs with a 

high rate capability and excellent cycling stability 

by constructing a 3D structure and enhancing the 

pseudocapacitive charge storage process in the 

electrodes.  

In this study, we constructed FeSe2 clusters assembled 

by nanorods using a facile hydrothermal reaction. 

The unique 3D structures reduced the ion diffusion 

length, mitigating the sluggish electrochemical 

kinetics. Quantitative kinetics analysis revealed that 

the pseudocapacitive charge storage significantly 

contributed to the sodium-ion storage. As an SIB 

anode, the as-prepared FeSe2 clusters exhibited high 

rate performance, high initial Coulombic efficiency, 

and stable cycling performance. 

2 Experimental 

2.1 Material synthesis 

The FeSe2 clusters (C-FeSe2) were synthesized as follow. 

(NH4)2Fe(SO4)2 (1 mmol) were added to distilled water 

(30 mL) under stirring. Then, SeO2 (2 mmol) and 

hydrazine hydrate (6 mL) were sequentially added to 

the resulting mixture. Finally, the obtained solution 

was transferred into a Teflon-lined stainless-steel 

autoclave and maintained at 180 °C for 12 h. The 

product was collected via centrifugation, washed 

with distilled water and ethanol, and dried at 70 °C 

for 12 h in vacuum. For comparison, FeSe2 particles 

(P-FeSe2) were synthesized using the same procedure 

with hydrazine hydrate (3 mL). Furthermore, time- 

dependent experiments were performed to investigate 

the growth process of the FeSe2 clusters. 

2.2 Characterization 

X-ray diffraction (XRD) patterns were recorded using 

a D8 Advance X-ray diffractometer with a non- 

monochromated Cu Kα X-ray source. Raman spectra 

were obtained using a micro-Raman spectroscopy 

system (inVia, Renishaw). Field-emission scanning 

electron microscopy (FESEM) images and energy- 

dispersive X-ray spectra (EDS) were obtained using  

a microscope (JEOL-7100F). Transmission electron 

microscopy (TEM) images and high-resolution TEM 

(HRTEM) images were obtained using another 

microscope (JEM-2100F). 

2.3 Electrochemical measurements 

The electrochemical properties were measured by 

assembling 2016 coin cells in a glove box filled with 

pure argon gas. Sodium chips were used as the counter 
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electrode. The working electrode was obtained by 

mixing the as-prepared materials, acetylene black, and 

carboxyl methyl cellulose at a weight ratio of 70:20:10. 

The slurry was cast on copper foil, dried at 70 °C for 

12 h, and heated at 120 °C for 2 h in a vacuum oven. 

The active material loaded on the copper foil was 

1.0–1.5 mg·cm–2. Three different electrolytes were 

used: 1 M NaCF3SO3 dissolved in diethyleneglycol 

dimethylether (DIGLYME), 1 M NaClO4 in ethylene 

carbonate and dimethyl carbonate (EC/DMC), and 

1 M NaClO4 in EC/DMC with 5% fluoroethylene 

carbonate (FEC) electrolytes. Galvanostatic charge/ 

discharge measurements were performed in a potential 

range of 0.5–2.9 V νs. Na+/Na using a multichannel 

battery testing system (LAND CT2001A). Cyclic 

voltammetry (CV) and electrochemical impedance 

spectroscopy (EIS) were performed using electrochemical 

workstations (CHI600D and Autolab Potentiostat 

Galvanostat 302N). All of the measurements were 

performed at room temperature. 

3 Results and discussion 

3.1 Structural characterization 

As shown in Fig. 1(a) and Fig. S1 in the Electronic 

Supplementary Material (ESM), the XRD peak for the 

obtained FeSe2 clusters and particles is indexed to  

the orthorhombic phase of FeSe2 (JCPDS card No. 

01-079-1892). The Raman spectrum of as-prepared 

FeSe2 clusters is shown in Fig. 1(b). Three characteristic 

peaks at 179.2, 216.3, and 254.4 cm–1 are observed. 

The peaks at 179.2 and 254.4 cm–1 correspond to the 

Se–Se librational and stretching vibrations or their  

combination, and the peak at 216.3 cm–1 is attributed 

to the Se–Se stretching vibrations [36]. The morphology 

of the as-prepared FeSe2 clusters was characterized 

using scanning electron microscopy (SEM) and TEM. 

The low-magnification SEM image shown in Fig. S2 

in the ESM indicates that the as-prepared 3D FeSe2 

clusters had a diameter of 500–800 nm. Elemental- 

mapping images were obtained to determine the 

chemical composition of the as-prepared FeSe2 clusters 

(Fig. S3 in the ESM). The elements Se and Fe were 

uniformly distributed in the obtained product. The 

EDS results show that the atomic ratio of Fe/Se was 

approximately 1:2. The high-magnification SEM image 

shown in Fig. 2(a) indicates that the FeSe2 clusters 

were composed of nanorods. The HRTEM image 

shown in Fig. 2(b) indicates that the nanorods had   

a diameter of 100–150 nm. A lattice fringe with a 

d-spacing of approximately 0.37 nm, which corresponds 

to the (110) plane of the FeSe2 crystal, is observed in 

the HRTEM image of Fig. 2(c). The selected-area 

electron diffraction (SAED) pattern shown in Fig. 2(d) 

is indexed to the (110) and (121) crystal planes of the 

orthorhombic FeSe2 phase. The morphology of the 

FeSe2 particles was investigated using SEM (Fig. S4 in 

the ESM), revealing that some nanoparticles aggregated 

to form larger particles. 

To investigate the formation process of the obtained 

FeSe2 clusters, time-dependent experiments were 

performed. The morphologies of the prepared samples 

at different stages were characterized using SEM 

(Fig. S5 in the ESM). When the reaction time was 1 h, 

irregular nanoparticles and rods formed. When the 

reaction time was extended to 3 h, obvious rod clusters 

appeared. After 6 h of reaction, the rods were longer.  

 

Figure 1 (a) XRD pattern and (b) Raman spectrum of the as-prepared FeSe2 clusters. 
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As the reaction time increased to 8 h, the particles 

existing on the rods were consumed, and the rod 

clusters became larger.  

According to the aforementioned experimental 

results, the growth process of the obtained FeSe2 clusters 

was schematically illustrated, as shown in Fig. S6 in 

the ESM. In the initial stage, nanoparticles and rods 

formed. As the reaction continued, particles were 

consumed, and the clusters assembled by the rods 

became larger and more uniform through Ostwald 

ripening [37]. Consequently, 3D rod clusters were 

obtained. 

3.2 Electrochemical performance in SIBs 

The electrochemical performance of FeSe2 electrodes 

was tested in 1.0 M NaCF3SO3 in DIGLYME. The 

charge–discharge profiles (1st, 30th, 100th, 200th, 300th, 

and 400th cycles) of the as-prepared FeSe2 clusters at 

1 A·g–1 are shown in Fig. 3(a). During the first sodiation 

process, an obvious voltage plateau was observed 

around 1.35 V. This is attributed to the slow reaction 

kinetics and the intercalation and conversion reactions 

that simultaneously occurred during the first discharge  

process, which have been previously reported [45–48]. 

Figure 3(b) shows the cycling performance of the FeSe2 

clusters and particles at a current density of 500 mA·g–1. 

Notably, the initial Coulombic efficiency of the FeSe2 

clusters reached 97.2%. The high Coulombic efficiency 

is attributed to the high cutoff voltage, which allows 

the avoidance of the irreversible capacity in the voltage 

range of 0.5–0 V, according to published reports [49]. 

Moreover, the as-prepared FeSe2 clusters exhibited 

high capacity retention of nearly 100% after a few cycles 

of activation. Clearly, the FeSe2 clusters exhibited a 

higher capacity and better cycling stability than the 

FeSe2 particles. After 100 cycles, the FeSe2 clusters 

retained a capacity of 508 mAh·g–1, which is significantly 

higher than that for the FeSe2 particles (389 mAh·g–1). 

The long-life cycling performance of the as-prepared 

FeSe2 was investigated at 1 and 3 A·g–1 (Fig. 3(c) and 

Fig. S7 in the ESM, respectively). The as-prepared 

FeSe2 exhibited a high initial Coulombic efficiency of 

97.4% and a discharge capacity of 515 mAh·g–1 after 

400 cycles at 1 A·g–1. At a high current density of 

3 A·g–1, the FeSe2-cluster electrode retained a capacity 

of >425 mAh·g–1 with a Coulombic efficiency of ~100% 

for 200 cycles. 

 

Figure 2 (a) SEM image, (b) high-magnification TEM image, (c) HRTEM image, and (d) SAED pattern of the as-prepared FeSe2 clusters.
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The rate performances of the as-prepared FeSe2 

clusters and particles were investigated by changing 

the current density from 1 to 35 A·g–1, as shown in 

Fig. 3(d). Because the capacity remained stable after 

50 cycles, the rate performance was tested after 50 cycles 

at 1 A·g–1. The average discharge capacities of the 

as-prepared FeSe2 clusters were 510, 436, 410, 368, 280, 

235, 183, and 128 mAh·g–1 at current densities of 1, 3, 

5, 10, 20, 25, 30, and 35 A·g–1, respectively. When   

the current density returned to 1 A·g–1, the capacity 

increased to the original value. In contrast, the 

capacities of the FeSe2 particles were only 420, 350, 

318, 243, 100, 37, 42, and 40 mAh·g–1 at the current 

densities of 1, 3, 5, 10, 20, 25, 30, and 35 A·g–1, respec-

tively. These results indicate that the FeSe2 clusters 

composed of the nanorods had better cycling capacity 

and rate performance than the FeSe2 particles. 

EIS was performed to identify the reason for the 

enhanced electrochemical performance of the as- 

prepared FeSe2 clusters. The results are shown in 

Fig. 3(e), revealing that the resistances of the electrolyte 

and cell components (Rs), the resistance of the solid 

electrolyte interface (RSEI), and the charge-transfer 

resistance (Rct) of the FeSe2 clusters were smaller than 

those of the FeSe2 particles, indicating the faster kinetics 

of the FeSe2 clusters (Table S1 in the ESM). Fast electron/ 

ion transfer kinetics is beneficial for improving the 

electrochemical performance of electrodes [50–52]. 

To investigate the effect of the electrolyte parameters 

on the cycling capability of the electrodes, different 

electrolytes (1 M NaClO4 in EC/DMC, EC/DMC-5%FEC) 

were used to study the cycling performance of the 

as-prepared FeSe2 clusters (Fig. S8 in the ESM).   

The as-prepared FeSe2 clusters with carbonate-based 

electrolytes (NaClO4 in EC/DMC, EC/DMC-5%FEC) 

suffered from rapid capacity decay (8 and 128 mAh·g–1 

after 100 cycles at 500 mA·g–1, respectively). The 

appropriate ether-based electrolyte effectively sup-

pressed the side reactions between the electrolyte and 

the anionic groups, improving the cycling performance 

of the electrodes [38, 53]. Figure S9 in the ESM shows 

the EIS results for the as-prepared FeSe2 clusters in 

carbonate-based electrolytes. The resistances of the 

FeSe2 clusters in the carbonate-based electrolytes were 

larger than those for the ether-based electrolyte, 

indicating the slower kinetics. 

To explain the high electrochemical performance  

of the FeSe2 clusters, CV curves for the FeSe2 clusters 

and particles were obtained at different scan rates 

ranging from 0.2 to 1 mV·s–1 (Fig. 4(a) and Fig. S10  

 

Figure 3 Electrochemical performance of the as-prepared FeSe2 electrodes for SIBs. (a) Charge–discharge profiles of the FeSe2

clusters at a current density of 1 A·g–1. (b) Cycling performance of the FeSe2 clusters and particles at 500 mA·g–1. (c) Long-life cycling 
performance of the FeSe2 clusters at 1 A·g–1. (d) Rate performance of the FeSe2 clusters and particles after 50 cycles at current densities 
ranging from 1 to 35 A·g–1. (e) Nyquist plots for the FeSe2 clusters and particles. 
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in the ESM). The CV curves for the FeSe2 clusters 

overlapped to a greater degree than those of the FeSe2 
particles at different scan rates, indicating the better 

cycle reversibility of the FeSe2 clusters. The sodium- 

diffusion coefficient was calculated using the Randles– 

Sevick equation [54, 55] 

Ip = 0.4463nFAC(nFvD/RT)1/2 = [(269000)n3/2AD1/2C]v1/2   

(1) 

where Ip is the peak current, n is the number of 

electrons transferred in the redox process, F is Faraday’s 

constant, A is the surface area of the electrode, D is 

the diffusion coefficient, C is the concentration of 

sodium ions, and v is the scan rate. Using Eq. (1), the 

plot of the peak current Ip vs. the square root of the 

scan rate (v1/2) was obtained for the peak oxidation 

current at a voltage of 1.52 V (Fig. 4(b)). The calculated 

diffusion coefficient D for the FeSe2 clusters (1.32 × 

10–8 cm2·s–1) was significantly greater than that for the 

FeSe2 particles (6.1 × 10–10 cm2·s–1). Moreover, this value 

is greater than that commonly reported for anodes 

used in SIBs [56, 57], indicating the potential of the 

FeSe2 clusters for high-rate applications. 

To provide insights and quantify the total capacitive 

contribution in the material, the capacitive and diffusion 

contributions were separated at a fixed voltage 

according to the following equation 

i (V) = k1v + k2v1/2            (2) 

where k1v and k2v1/2 represent the capacitive and 

diffusion contributions, respectively. Figure 4(c) shows 

the separation of the capacitive and diffusion currents 

of the FeSe2 clusters at a scan rate of 0.6 mV·s–1.   

The quantification results indicate that 72.6% of the 

total charge storage was capacitive. The ratios of the 

capacitive contribution to the diffusion contribution 

at different scan rates are presented in Fig. 4(d). The 

capacitive contribution gradually increased as the 

scan rate increased. At a scan rate of 0.8 mV·s–1, the 

capacitive-contribution ratio was 89.4%. A large 

capacitive contribution was beneficial for fast charge 

storage and yielded the high rate capability of the 

FeSe2 clusters. This capacitive behavior is similar to 

that previously reported [11, 43]. 

To investigate the reaction kinetics of Na/FeSe2 

cells, EIS was performed on an electrode comprising  

 

Figure 4 (a) CV curves of the as-prepared FeSe2 clusters at different scan rates after 50 cycles. (b) Randles–Sevick plot for the 
as-prepared FeSe2 clusters obtained from the CV data. (c) Separation of the capacitive and diffusion currents in the FeSe2 clusters at a 
scan rate of 0.6 mV·s–1. (d) Contribution ratio of the capacitive and diffusion-controlled charge storage in the FeSe2 clusters at 0.2, 0.4, 
0.6, and 0.8 mV·s–1. (e) Nyquist plots for the as-prepared FeSe2 electrode in the fully charged state after cycling from 1st to 100th. 
(d) Impedances Rs, RSEI, and Rct of the FeSe2 electrode during cycling. (f) Comparison between other SIB anode materials and the material
proposed herein. 



 

www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano Research 

7 Nano Res. 

as-prepared FeSe2 clusters in the fully charged state 

after cycling (Fig. 4(e)). The as-prepared FeSe2-cluster 

electrode exhibited stable values of Rs, RSEI, and Rct 

after 50 cycles (inset of Fig. 4(e)), indicating the highly 

stable electrochemical process. Figure 4(f) compares 

the rate performance of the as-prepared FeSe2 clusters 

with those of other anode materials for SIBs [30–32, 38]. 

Clearly, the FeSe2 clusters had a higher capacity   

and better rate performance than the other anode 

materials. 

In situ XRD was performed to further investigate 

the intrinsic reaction mechanisms of the FeSe2-cluster 

electrodes. An in situ cell was discharged to 0.5 V and 

then charged to 2.9 V under a constant current of 

100 mA·g–1 at room temperature (Fig. S11 in the ESM). 

During the first discharge process, there were three 

diffraction peaks (30.89°, 34.83°, and 36.23°), which 

correspond to the (020), (111), and (120) planes of 

FeSe2, respectively. During the reaction, these peaks 

became weaker and then disappeared. No obvious 

diffraction peaks appeared in the subsequent charge 

and discharge process. These results indicate that the 

amorphization of the FeSe2 electrode occurred after 

the electrochemical sodium-ion insertion. 

According to the aforementioned results, the excellent 

electrochemical performance of the as-prepared FeSe2 

clusters was due to the unique 3D structure, the highly 

capacitive behavior, and the appropriate ether-based 

electrolyte. The unique 3D structure enhanced the 

electron/ion-transfer kinetics. The highly capacitive 

behavior was beneficial for fast charge storage. The 

appropriate ether-based electrolyte suppressed the 

side reactions between the electrolyte and the anionic 

group of the intermediate, enhancing the cycling per-

formance of the as-prepared FeSe2-clusters electrode. 

4 Conclusions 

We successfully synthesized 3D FeSe2 clusters composed 

of nanorods using a facile hydrothermal method. As 

an anode material for SIBs, the as-prepared FeSe2 

clusters exhibited excellent cycling performance and 

a rate capability as high as 35 A·g–1. They delivered a 

high initial Coulombic efficiency of 97.4% and a high 

discharge capacity of 515 mAh·g–1 after 400 cycles  

at 1 A·g–1. Furthermore, we demonstrated that the 

unique 3D structure, highly capacitive behavior, and 

appropriate ether-based electrolyte contributed to  

the high electrochemical performance. The excellent 

overall performance of the FeSe2 clusters makes them 

a promising anode material for SIBs. 
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