Electronic Supplementary Material

Capacitance and voltage matching between MnO₂ nanoflake cathode and Fe₂O₃ nanoparticle anode for high-performance asymmetric micro-supercapacitors

Zehua Liu¹, Xiaocong Tian¹, Xu Xu¹ (云), Liang He¹, Mengyu Yan¹, Chunhua Han¹, Yan Li¹, Wei Yang¹, and Liqiang Mai^{1,2} (云)

¹ State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

² Department of Chemistry, University of California, Berkeley, CA 94720, USA

Supporting information to DOI 10.1007/s12274-017-1451-4

Figure S1 XRD patterns of Fe₂O₃ nanoparticles and MnO₂ nanoflakes.

Figure S2 XPS spectra of O 1s in Fe_2O_3 nanoparticals (a) and MnO_2 nanoflakes (b).

Address correspondence to Xu Xu, xuxu@whut.edu.cn; Liqiang Mai, mlq518@whut.edu.cn

TSINGHUA DIVINIVERSITY PRESS

Figure S3 CV curves of Fe_2O_3 nanoparticles (a) and MnO_2 nanoflakes (b) at various scan rates (vs. Hg/HgO) in 1 M KOH. (c) Comparison of CV curves collected for MnO_2 and Fe_2O_3 electrodes at a scan rate of 50 mV·s⁻¹. (d) Mass capacitance of MnO_2 and Fe_2O_3 electrodes at different scan rates ranging from 20 to 200 mV·s⁻¹. The MnO_2 nanoflakes or Fe_2O_3 nanoparticles were electrodeposited onto nickel foam. Then, the sample was annealed at 350 °C under nitrogen atmosphere for 3 h. The electrochemical studies of MnO_2 nanoflakes and Fe_2O_3 nanoparticles were conducted in a three-electrode configuration. Hg/HgO reference electrode and Pt counter electrode were used in the measurement.

Figure S4 CV curves of M-MSCs (a) and F-MSCs (b) at various scan rates in 1 M KOH with the potential window from 0 to 0.6 V.

Figure S5 The voltage drops of the A-MSCs at various current densities.

TSINGHUA Springer | www.editorialmanager.com/nare/default.asp

Nano Res.

Fe_2O_3 (nm)	1,360	1,338	1,400	1,450	1,463	1,418	1,362	<i>x</i> = 1,398.7
MnO ₂ (nm)	490	470	560	547	547	530	511	x = 522.1

Figure S6 The stack capacitances of A-MSCs, M-MSCs and F-MSCs at different current densities.

Figure S7 Ragone plot of the specific volumetric energy density vs. power density of A-MSCs, M-MSCs and F-MSCs.