Electronic Supplementary Material

Interface-modulated fabrication of hierarchical yolk–shell Co₃O₄/C dodecahedrons as stable anodes for lithium and sodium storage

Yuzhu Wu^{1,§}, Jiashen Meng^{1,§}, Qi Li¹ (⊠), Chaojiang Niu¹, Xuanpeng Wang¹, Wei Yang¹, Wei Li¹, and Liqiang Mai^{1,2} (⊠)

¹ State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

² Department of Chemistry, University of California, Berkeley, California 94720, USA

[§] These authors contributed equally to this work.

Supporting information to DOI 10.1007/s12274-017-1433-6

Figure S1 (a) N_2 adsorption/desorption isotherm curve of the as-synthesized rhombic dodecahedral morphology ZIF-67. (b) TG curves of ZIF-67 in air (black) and nitrogen (red) atmosphere.

Figure S2 XRD pattern (a) and SEM image of Co₃O₄ bulks (denoted as Co₃O₄-B).

Address correspondence to Liqiang Mai, mlq518@whut.edu.cn; Qi Li, qi.li@whut.edu.cn

TSINGHUA DINIVERSITY PRESS

Figure S3 TEM images of the yolk-shell Co₃O₄/C dodecahedrons.

Figure S4 XPS survey spectra of the yolk-shell Co₃O₄/C dodecahedrons: (a) wide scan of Co₃O₄/C, (b) Co 2p.

Figure S5 (a) N_2 adsorption/desorption isotherm curve and (b) pore size distribution of the yolk-shell Co_3O_4/C dodecahedrons.

MOFs are formed by linking organic and inorganic moieties through coordination bonding. ZIFs belong to a subclass of MOFs materials, whose skeleton structures are made of metal ions and imidazoles organic ligands by coordination polymerization. Because of the inherent structure of ZIF-67, it has high specific surface area and high porosity. But after the pyrolysis of ZIF-67, its inherent porous channel structure will collapse, leading to the smaller specific surface area of Co_3O_4/C dodecahedrons than that of ZIF-67.

TSINGHUA Diversity Press

Figure S6 Raman spectrum of the yolk-shell Co₃O₄/C dodecahedrons, showing the amorphous nature of carbon in Co₃O₄/C dodecahedrons.

Figure S7 TG curve of the yolk–shell Co_3O_4/C dodecahedrons in air. The mass content of carbon in the yolk–shell Co_3O_4/C is about 6.45 wt.%.

Figure S8 (a) XRD patterns of the as-synthesized Ni-BTC and yolk–shell NiO/C microspheres. (b) SEM image of the as-synthesized Ni-BTC microspheres. (c) and (d)) SEM images of the yolk–shell NiO/C microspheres.

Figure S9 SEM image of the Co_3O_4/C dodecahedrons after cycling at 200 mA·g⁻¹ for 50 cycles, showing no notable variation in morphology. It should be noted that the small nanoparticles observed in the image are carbon black.

Figure S10 Electrochemical impedance spectra (Nyquist plots) of the yolk-shell Co₃O₄/C dodecahedrons and Co₃O₄-B.

Figure S11 Electrochemical performance of yolk–shell Co_3O_4/C dodecahedrons in SIBs: galvanostatic charge/discharge profiles at a current density of 1,000 mA·g⁻¹.

Figure S12 Kinetic analysis of the electrochemical behavior vs. Na^+/Na for the yolk–shell Co_3O_4/C dodecahedrons. (a) CV curves at various scan rates from 0.2 to 1.0 mV·s⁻¹. (b) Determination of the *b*-value using the relationship between peak current and scan rate. (c) Separation of the capacitive and diffusion currents at a scan rate of 0.8 mV·s⁻¹. (d) Contribution ratio of the capacitive and diffusion-controlled charge at various scan rates.

Table S1	Comparison	n of the cy	cling perform	nance for LI	Bs with	previous re	ports

	Current density $(mA \cdot g^{-1})$	Specific capacity $(mA \cdot g^{-1})$	Cycle number	Reference
Yolk-shell Co ₃ O ₄ /C dodecahedrons	200	1,100	120	This work
Co ₃ O ₄ nanocages	50	970	30	[S1]
Co ₃ O ₄ polyhedra/MWCNTs	100	889	100	[S2]
Co ₃ O ₄ embedded N-porous carbon dodecahedrons	100	1,350	100	[S3]
Ultrafine Co ₃ O ₄ nanocrystallites in grapheme oxide	200	908	100	[S4]

Table S2	Comparisor	n of the c	ycling p	performance	for SIBs	with	previous	reports
	1						1	

	Current density $(mA \cdot g^{-1})$	Specific capacity $(mA \cdot g^{-1})$	Cycle number	Reference
Yolk-shell Co ₃ O ₄ /C dodecahedrons	1,000	240	200	This work
Co ₃ O ₄ @CNTs	160	440	30	[S5]
Nanostructured Co ₃ O ₄	25	447	50	[S6]
Co ₃ O ₄ MNSs @ 3DGNs	25	523	50	[S7]
m-Co ₃ O ₄	90	416	100	[S8]

References

- [S1] Jiang, Z.; Li, Z. P.; Qin, Z. H.; Sun, H. Y.; Jiao, X. L.; Chen, D. R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. *Nanoscale* 2013, 5, 11770–11775.
- [S2] Li, W. Y.; Xu, L. N.; Chen, J. Co₃O₄ nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 2005, 15, 851–857.
- [S3] Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Porous Co₃O₄ nanotubes derived from Co₄(CO)₁₂ clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. *Adv. Mater.* 2007, *19*, 4505–4509.
- [S4] Huang, G.; Zhang, F. F.; Du, X. C.; Qin, Y. L.; Yin, D. M.; Wang, L. M. Metal organic frameworks route to *in situ* insertion of multiwalled carbon nanotubes in Co₃O₄ polyhedra as anode materials for lithium-ion batteries. ACS Nano 2015, 9, 1592–1599.
- [S5] Li, S.; Qiu, J. X.; Lai, C.; Ling, M.; Zhao, H. J.; Zhang, S. Q. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. *Nano Energy* 2015, 12, 224–230.
- [S6] Zhao, K. N.; Liu, F. N.; Niu, C. J.; Xu, W. W.; Dong, Y. F.; Zhang, L.; Xie, S. M.; Yan, M. Y.; Wei, Q. L.; Zhao, D. Y. et al. Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes. *Adv. Sci.* 2015, *2*, 1500154.
- [S7] Rahman, M. M.; Glushenkov, A. M.; Ramireddy, T.; Chen, Y. Electrochemical investigation of sodium reactivity with nanostructured Co₃O₄ for sodium-ion batteries. *Chem. Commun.* 2014, 50, 5057–5060.
- [S8] Jian, Z. L.; Liu, P.; Li, F. J.; Chen, M. W.; Zhou, H. S. Monodispersed hierarchical Co₃O₄ spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. *J. Mater. Chem. A* 2014, *2*, 13805–13809.