Supporting information

Synergistic Effect Between Layer Surface Configurations and K ions of

Potassium Vanadate Nanowires for Enhanced Energy Storage

Performance

Jiashen Meng,[†] Ziang Liu,[†] Chaojiang Niu,[†] Xiaoming Xu, Xiong Liu, Guobin Zhang, Xuanpeng Wang, Meng Huang, Yang Yu, Liqiang Mai^{*}

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Table S1. Crystallographic parameters of V_2O_5 , KV_3O_8 and $K_{0.25}V_2O_5$, respectively.

Chemical formula	V ₂ O ₅	KV ₃ O ₈	K _{0.25} V ₂ O ₅
Reference code	00-041-1426	01-073-1483	00-039-0889
Crystal system	Orthorhombic	Monoclinic	Monoclinic
Space group	Pmmn	P21/m	A2/m
a/Å	11.5160	7.6400	10.1300
b/Å	3.5656	8.3800	3.6150
c/Å	4.3727	4.9790	15.7400
α/°	90.0000	90.0000	90.0000
β/ °	90.0000	96.9500	109.5000
γ/°	90.0000	90.0000	90.0000
Cell volume/Å ³	179.55	316.43	543.34

Fig. S1 XRD pattern and SEM image of H₂V₃O₈ nanowires.

Fig. S2 CV curves of V_2O_5 (a), KV_3O_8 (b) and $K_{0.25}V_2O_5$ (c) nanowires obtained at a scan rate of 0.2 mV s⁻¹ and potentials ranging from 1.5-4 V vs. Li/Li⁺. Charge-discharge curves of V_2O_5 (d), KV_3O_8 (e) and $K_{0.25}V_2O_5$ (f) nanowires tested at the current density of 100 mA g⁻¹.

Fig. S3 The galvanostatic intermittent titration technique (GITT) for V_2O_5 (a), KV_3O_8 (b) and $K_{0.25}V_2O_5$ (c) nanowires as Li-ion battery cathodes.

Fig. S4 Charge-discharge curves of $K_{0.25}V_2O_5$ nanowires as Li-ion battery cathodes obtained at different current densities from 100 to 200, 300, 500 and 1000 mA g⁻¹.

Fig. S5 AC impedance plots of V_2O_5 , KV_3O_8 and $K_{0.25}V_2O_5$ nanowires as Li-ion battery cathodes.

Fig. S6 Charge-discharge curves of $V_2O_5(d)$, KV_3O_8 (e) and $K_{0.25}V_2O_5(f)$ nanowires as Na-ion battery cathodes tested at the current density of 100 mA g⁻¹.

Fig. S7 *In-situ* X-ray diffraction patterns of KV_3O_8 nanowires during galvanostatic charge and discharge at 150 mA g⁻¹ in lithium ion batteries. The horizontal axis represents the selected 2 θ regions, and time is on the vertical axis. The diffraction intensity is colour coded with the scale bar shown on left. The corresponding voltage curve is plotted to the right.

	K:V at initial stage	K:V after 100 cycles	Change ratio of K
KV ₃ O ₈ nanowires	1.013:3	0.792:3	21.8%
$K_{0.25}V_2O_5$ nanowires	0.252:2	0.241:2	4.4%

Table S2 The ICP test results of KV_3O_8 and $K_{0.25}V_2O_5$ nanowires at initial stage and after 100 cycles,
respectively.