Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201500284

Mesoporous Li_3VO_4/C Submicron-Ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for High-Power Lithium-Ion Batteries

Qidong Li, Qiulong Wei, Jinzhi Sheng, Mengyu Yan, Liang Zhou, * Wen Luo, Ruimin Sun, and Liqiang Mai*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany,

2015.

Supporting Information

Mesoporous Li₃VO₄/C Submicron-ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for High-Power Lithium-Ion Batteries

Qidong Li, Qiulong Wei, Jinzhi Sheng, Mengyu Yan, Liang Zhou,* Wen Luo, Ruimin Sun, and Liqiang Mai*

Q. D. Li, Q. L. Wei, J. Z. Sheng, M. Y. Yan, Prof. L. Zhou, W. Luo, R. M. Sun, Prof. L. Q. Mai

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. E-mail: mlq518@whut.edu.cn; liangzhou@whut.edu.cn.

Keywords: lithium-ion battery; anode; mesoporous; high-power; Li₃VO₄

The SI file includes detailed Experimental Methods, 5 Tables and 9 Figures.

Figure S1. (a) SEM and (b) TEM images of LVO-EG/GO.

Figure S2. (a) Optical images of LVO-EG and LVO/C. (b) Thermogravimetric analysis (TGA) of LVO-EG in Ar atmosphere.

Figure S3. XRD patterns and the refinement XRD patterns of LVO/C and LVO-EG.

Table 51 Cent parameters of E v 0-E0 and E v 0/C.				
	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	cell volume (Å ³)
LVO-EG	6.309	5.452	4.972	171.020
LVO/C	6.310	5.446	4.940	169.759

Table S1 Cell parameters of LVO-EG and LVO/C.

LVO-EG	LVO/C	LVO-EG/GO	LVO/C/rGO	Band assignment	Reference
3428	3430	3420	3435	v(OH) water	34
		2949		v(CH) _{as}	34
		1721		<i>v</i> (COO)	35
1638		1622		$\delta(\mathrm{OH})$	34
1496	1488	1478	1476	Amorphous carbon	34
	1425	1428	1426	Amorphous carbon	35
1404				(CH2) deformation	34
1314				δ (CH2) in-plane	34
		1246		v(C-O) ether	34
		1088		v(CO) phenolic	34
1047		1046		v(C-O) alcoholic	34
842	831	841	828	<i>v</i> (V-O-V)	33
472	464	476	465	<i>v</i> (V-O-V)	33

Table S2 FT-IR band assignments of the four samples

v: stretching; δ : bending.

Figure S4. The Raman spectrum of LVO/C (a,d), LVO-EG/GO (b,e) and LVO/C/rGO (c,f).

	LVO/C	LVO-EG/GO	LVO/C/rGO
$I_{\rm D}/I_{\rm G}$	3.30	2.16	2.15
d _{dom} (nm)	11.676	17.839	17.922

Table S3 The I_D/I_G and d_{dom} values of LVO/C, LVO-EG/GO, and LVO/C/rGO.

Figure S5. Nitrogen adsorption-desorption isotherms and pore size distribution curves of solid LVO particle (a) and LVO/C (b).

Table S4 The BET surface area and pore volume of the solid LVO, LVO/C, and LVO/C/rGO.

	solid LVO	LVO/C	LVO/C/rGO
BET surface area $(m^2 g^{-1})$	0.89	9.0	12.5
Pore volume (cm ^{3} g ⁻¹)	0.003	0.028	0.037

Figure S6. (a) Cycling performance of LVO/C anode at 10 C. (b) Discharge/charge curves of LVO/C anode at different current densities. (c) Rate performance of solid LVO/rGO electrode.

Figure S7. Rate performance of solid LVO/rGO electrode.

References	Anode	Cycling performance	Rate capability	
Newcoscie 2014 (11072	LVO/CNT	250 mAh g ⁻¹ after 2000	240	
Nanoscale, 2014, 6 11072		cycles at 5 C	240 mAn g at 40 C	
Cl. C. 2015 51 220	LVO@GNS	163 mAh g ⁻¹ after 5000	$122 \text{ mAb} = \frac{1}{2} + 50 \text{ G}$	
Chem. Commun. 2015, 51, 229		cycles at 5 C	$133 \text{ mAh g}^{-1} \text{ at } 50 \text{ C}^{-1}$	
N. I. W. 2012, 12, 4715	LVO/G	215 mAh g^{-1} after 500	233 mAh g^{-1} at 20 C	
Nano Lett. 2013, 13, 4/15		cycles at 10 C		
Adv. Energy Mater. 2013, 3,		280 mAh g ⁻¹ after 25 cycles		
428	LVO	at 0.05 C	323 mAh g^{-1} at 0.2 C	
Adv. Funct. Mater. 2015. 25,		250 mAh g^{-1} after 2000		
3497	LVU/C	cycles at 10 C	106 mAn g at 80 C	
J. Electrochem. Chem. 2015,		398 mAh g ⁻¹ after 80 cycles	270	
745, 1	Lv0/C	at 1C	370 mAn g at 15 C	
J. Power Sources 2013, 244,	LVO	185.55 mAh g ⁻¹ after 100	249.14 mAh g ⁻¹ at 1	
557	LVO	cycles at 1 C	С	
None Energy 2015, 12, 700		299 mAh g ⁻¹ after 1000	88.4 mAh g ⁻¹ at 50 C	
Nano Energy 2015, 12, 709	LVO/G	cycles at 10 C		
J. Power Sources 2015, 274,		394 mAh g ⁻¹ after 100	$100 \text{ m} \text{ Ab } \text{ s}^{-1} \text{ st } 20 \text{ C}$	
345	LVU/C	cycles at 1 C	100 mAn g at 30 C	
J. Power Sources 2014, 248,		396 mAh g^{-1} after 100		
122 LVO		cycles at 1 C	210 mAngat 4 C	
0	WO/C/-CO	325 mAh g ⁻¹ after 5000	230 mAh g ⁻¹ at 125	
Our work	LVU/C/rGU	cycles at 10 C	С	

Table S5 The comparison of the electrochemical performances with precious works.

Figure S8. The energy density distribution of the three intercalation/deintercalation anodes, assuming LiFePO₄ (100 mAh g⁻¹ at 50 C) ^{ref. S1} as the cathode material.

Figure S9. Rate performance of LVO/C/rGO with the composition of active material: acetylene black: binder = 92:3:5 in the composite anode.

References

S1. B. Wang, W. A. Abdulla, D. Wang and X. S. Zhao, *Energy Environ. Sci.*, 2015,8, 869-875