Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.

Small^{Micro}

Supporting Information

for *Small.*, DOI: 10.1002/smll.201403358

Three-Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for High-Rate Long-Life Lithium Batteries

Qinyou An, Qiulong Wei, Pengfei Zhang, Jinzhi Sheng, Kalele Mulonda Hercule, Fan Lv, Qinqin Wang, Xiujuan Wei, and Liqiang Mai* Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

Three-Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for High-Rate Long-Life Lithium Batteries

Qinyou An, Qiulong Wei, Pengfei Zhang, Jinzhi Sheng, Kalele Mulonda Hercule, Fan Lv, Qinqin Wang, Xiujuan Wei, and Liqiang Mai*

Mr. Q.Y. An,^[†] Mr. Q. L. Wei,^[†] Mr. P. F. Zhang, Mr. J. Z. Sheng, Mr. K. M. Hercule, Mr. F. Lv, Ms. Q. Q. Wang, Ms. X. J. Wei, Prof. L. Q. Mai

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, WUT-Harvard Joint Nano Key Laboratory, Wuhan University of Technology, Wuhan, 430070 P. R. China

E-mail: mlq518@whut.edu.cn

[†] These authors contributed equally to this work.

Figure S1. TG curve of the as-synthesized nanowire precursor, measured at a rate of 5 °C min⁻¹ in air. About 9.05% weight loss, $n \approx 1.0$ is calculated in the V₂O₅·*n*H₂O.

Figure S2. SEM images of the hydrogels synthesized by adding $(NH_4)_2SO_4$ (a), NH_4Cl (b), Li_2SO_4 (c), LiCl (d), Na_2SO_4 (e) and K_2SO_4 (f), respectively; insets are the related photographs.

Figure S3. Photographs (a,b) and SEM image of the products obtained in a 600 mL reaction.

Figure S4. The XRD pattern (a), nitrogen adsorption-desorption isotherm (b), SEM image (c), and HRTEM image (d) of the V_2O_5 sample obtained after annealing the precursor at 450 °C in air. (e) The electrochemical performance also demonstrates that the sample annealed at 450 °C shows poor rate capability and cycling stability (only 64.7% capacity retained after 500 cycles at 1 A g⁻¹) when compared to the V_2O_5 networks (Figure 4a). These further demonstrate the advantage of the designed interconnected nanonetwork structure.

Figure S5. SEM images of the directly dried V_2O_5 sols (a) and annealed V_2O_5 particles (b). Nitrogen adsorption-desorption isotherm (c) and the corresponding pore-size-distribution curve (d) of the V_2O_5 particles

Figure S6. (a) SEM image of the disorder V_2O_5 nanorods. (b) Rate performance of the disorder V_2O_5 nanorods cycled in 2.4 to 4.0 V.

Figure S7. Cyclic voltammograms at a scan rate of 0.1 mV s⁻¹ (a) and cycling performance at the current density of 0.1 A g⁻¹ (b) of interconnected V_2O_5 nanonetworks in the potential range from 2.0 to 4.0 V.

Figure S8. The rate performance (a) and corresponding discharge/charge curves (b) of interconnected V_2O_5 nanonetworks in the potential range from 2.4 to 4.5 V.

Figure S9. (a) AC impedance spectra of V_2O_5 particles cathode. (b) The related equivalent circuit of the cell.

cell state	Rs (ohm)	Rct (ohm)
V_2O_5 particles after 10 cycles	4	281
V_2O_5 nanonetworks after 10 cycles	4	155
V_2O_5 nanonetworks after 50 cycles	4	147
V_2O_5 nanonetworks after 100 cycles	5	153
V ₂ O ₅ nanonetworks after 1000 cycles	5	168

Table S1. The fitting values based on the EIS data.

Table S2. The electrochemical performances (cycling performance at relevant current rate or density, and rate capability) of the interconnected V_2O_5 nanonetworks and the other reported V_2O_5 materials.

Sample	Voltage range	Capacity (mAh g ⁻¹)/ Cycle number	Current rate or density	Rate capacity (mAh g ⁻¹) at relevant current rate or density
3D interconnected V ₂ O ₅ nanonetworks (our work)	2.4 – 4 V	106/1000	1 A g ⁻¹	100 at 2 A g ⁻¹
V ₂ O ₅ microspheres ¹	2.5 – 4 V	~ 135/100	$\sim 0.3 \text{ Ag}^{-1}$	92.2 at 2.25 A g ⁻¹
V ₂ O ₅ /CNTs composites ²	2-4 V	104/200	0.75 A g ⁻¹	169 at 1.5 A g ⁻¹
Porous V ₂ O ₅ nanotubes ³	2.5 - 4 V	105/250	2 A g ⁻¹	62.5 at 15 A g ⁻¹
3D porous V ₂ O ₅ ⁴	2.5 – 4 V	110/200	1.5 A g ⁻¹	86.7 at 8.4 A g ⁻¹ (charge at 0.15 A g ⁻¹)

References

- 1. S. Wang, Z. Lu, D. Wang, C. Li, C. Chen, Y. Yin, J. Mater. Chem., 2011, 21, 6365-6369.
- X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X. Wang, H. Sohn, Q. Zhang, B.M. Wu, F. Wei, Y. Lu, *Energy Environ. Sci.*, 2012, 5, 6845-6849.
- 3. H.G. Wang, D.L. Ma, Y. Huang, X.B. Zhang, Chem. Eur. J., 2012, 18, 8987-8993.
- 4. S. Wang, S. Li, Y. Sun, X. Feng, C. Chen, *Energy Environ. Sci.*, 2011, 4, 2854-2857.