

Available online at www.sciencedirect.com

Solid State Ionics 161 (2003) 205-208

www.elsevier.com/locate/ssi

Influence of surface modification on structure and electrochemical performance of LiNi_{0.5}Co_{0.5}VO₄

L.-Q. Mai, W. Chen*, Q. Xu, Q.-Y. Zhu, C.-H. Han, W.-L. Guo

Institute of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China

Received 3 January 2003; received in revised form 17 July 2003; accepted 22 July 2003

Abstract

The electrochemical stability of $\text{LiNi}_{0.5}\text{Co}_{0.5}\text{VO}_4$ is improved by sol-gel coating with an amorphous SiO₂ film. This limits direct contact between $\text{LiNi}_{0.5}\text{Co}_{0.5}\text{VO}_4$ and electrolyte, and thus, effectively provides the structural stability for the electrochemically active intercalation compound $\text{LiNi}_{0.5}\text{Co}_{0.5}\text{VO}_4$, resulting in improved specific capacity and cycling performance.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Secondary lithium batteries; LiNi0.5Co0.5VO4; Surface modification

1. Introduction

Li ion batteries belong to a rapidly growing field as rechargeable power sources for room temperature consumer applications, since the commercialization of Sony's lithium-ion cell in 1990 [1–7]. However, harmful interactions between the active positive materials and the electrolyte in lithium secondary batteries deteriorate the performance of the cathode materials and the batteries [8–10]. In order to limit these harmful interactions, interest in surface-modified cathodes has increased due to their improved electrochemical behavior [8–11]. It is reported that thin film oxide coating (Al₂O₃, ZrO₂, MgO, etc.) on the powder surface has improved the electrochemical perforcompound (LiCoO₂, LiNiO₂, LiMnO₂, etc.) [9–13]. LiNi_{0.5}Co_{0.5}VO₄, a high-voltage cathode candidate, also suffers from harmful interaction at the surface [14,15]. In the present work, a SiO₂ film has been coated onto the surface of the LiNi_{0.5}Co_{0.5}VO₄ cathode material by the sol-gel method using Si(OCH₂CH₃)₄. The influence of surface modification on electrochemical performance of LiNi_{0.5} Co_{0.5}VO₄ is reported.

mance of the electrochemically active intercalation

2. Experimental

LiNi_{0.5}Co_{0.5}VO₄ powders were prepared first by dissolving stoichiometric quantities of Li₂CO₃, Ni₂ (OH)₂CO₃, Co(Ac)₂ and NH₄VO₃ in de-ionized water. Under vigorous stirring, saturated citric acid solution and polyethylene glicol solution were added and a brown xerogel was obtained after being heated

^{*} Corresponding author. Tel.: +86-27-87864033; fax: +86-27-87642079.

E-mail address: chenw@public.wh.hb.cn (W. Chen).

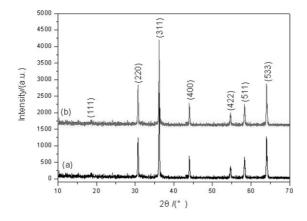


Fig. 1. XRD patterns of uncoated (a) and coated (b) LiNi_{0.5}Co_{0.5}VO₄.

at 80-100 °C. The as-obtained xerogel was heated at 450 °C for 4 h and brown powders were attained.

The sol-gel coating of SiO₂ on the powders was carried out as follows: 0.5 mol LiNi_{0.5}Co_{0.5}VO₄ powders were added to the mixed solution of 100 ml Si(OCH₂CH₃)₄ and 0.01 mol ethanol under vigorous stirring and ultrasonic treatment at 40 °C, and then exposed in the air. After 3 days, the products obtained were heated at 600 °C for 10 h; this ultimately gave a yellowish powder.

X-ray diffraction (XRD) experiments were performed on a D/MAX-III X-ray diffractrometer with Cu K α radiation and a graphite monochrometer. Transmission electron microscopy (TEM) images were attained using a JEM-100CX II scanning electron microscope at 80 kV. X-ray photoelectron spectroscopy (XPS) measurements were carried out by using an ESCALAB MK II multi-technique electron spectrometer. The data were obtained at room temperature; typically, the operating pressure in the analysis chamber was below 1×10^{-8} Pa. The cathode preparation and the test cell were similar to as described in Ref. [14]. Li metal was used as the anode. The test cells containing 1 M LiPF₆-EC-DEC (1:1 volume ratio) were usually charged to 4.9 V and discharged to 2.8 V at a 0.15 C rate.

3. Results and discussion

The XRD patterns for uncoated and coated $LiNi_{0.5}$ $Co_{0.5}VO_4$ are shown in Fig. 1. They are dominated by the (311) Bragg peak at $2\theta = 36^{\circ}$. Both of the XRD patterns display a weak (111) peak and a strong (220) peak, which indicate the predominant inverse spinel structure of LiNi_{0.5}Co_{0.5}VO₄ [14]. The presence of vanadium atoms on the tetrahedrally coordinated 8a site leads to the increase of the (220) intensity at the expense of the (111) peak [14,15]. The XRD pattern of coated LiNi_{0.5}Co_{0.5}VO₄ shows no any secondary phase, indicating that SiO₂ exits in an amorphous state, or can react with LiNi_{0.5}Co_{0.5}VO₄ to give concentration gradients at the particle surface. The lattice constant a of the coated samples $(a=8.220 \pm$ 0.002 A) show no change compared to the uncoated one $(a = 8.220 \pm 0.002 \text{ Å})$, indicating that Si does not enter the LiNi_{0.5}Co_{0.5}VO₄ lattice.

The TEM images of uncoated and coated $\text{LiNi}_{0.5}$ Co_{0.5}VO₄ are shown in Fig. 2. Spherical grains of uncoated $\text{LiNi}_{0.5}$ Co_{0.5}VO₄ are clear, with little impurity on their surface (Fig. 2a). In contrast, there is some deposit on the surface of spherical grains of

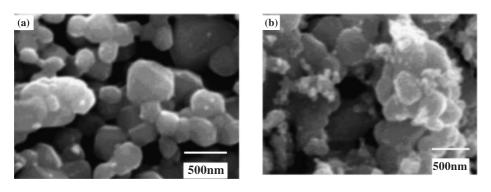


Fig. 2. TEM images of uncoated (a) and coated (b) LiNi_{0.5}Co_{0.5}VO₄.

Table 1	
Surface composit	ion of the coated and uncoated $LiNi_{0.5}Co_{0.5}VO_4$
Sample	Surface composition (atom%)

r						
	Li	Ni	Со	V	Si	0
uncoated LiNi0.5Co0.5VO4	12.41	6.19	6.22	12.39	0.00	62.79
coated LiNi _{0.5} Co _{0.5} VO ₄	7.21	3.49	3.51	7.19	21.52	57.08

coated LiNi_{0.5}Co_{0.5}VO₄ (Fig. 2b). Surface composition of uncoated and coated LiNi_{0.5}Co_{0.5}VO₄ were analyzed by XPS [16] and summarized in Table 1. Surface composition of uncoated LiNi_{0.5}Co_{0.5}VO₄ is very near to the stoichiometric ratio of the elements in LiNi_{0.5}Co_{0.5}VO₄, but the content of Li, Ni and Co on the surface of coated LiNi_{0.5}Co_{0.5}VO₄ decreases and a concentration of silicon (21.52 at.%) appears. There is only one chemical state for Si with a binding energy of 102.99 eV, corresponding to SiO₂ [16]. A significant amount of Si atoms is thus distributed at the surface in the form of SiO₂, and Si atoms do not enter $LiNi_{0.5}Co_{0.5}VO_4$ in the form of a solid solution; this supports the result of the XRD, but is different from the solid solution forming on the Al₂O₃-coated LiCoO₂ material [11,13] or on the ZrO₂-coated LiNiO₂ material [12].

The first charge-discharge curves and the capacity of the first ten cycles for uncoated and coated $\text{LiNi}_{0.5}$ $\text{Co}_{0.5}\text{VO}_4$ are shown in Figs. 3 and 4, respectively. The first-charge capacity of uncoated $\text{LiNi}_{0.5}\text{Co}_{0.5}\text{VO}_4$ is 90 mAh/g; it decreases to 38.7 mAh/g after ten cycles, where the cycling efficiency is 43%. However, the first-charge capacity of coated $\text{LiNi}_{0.5}\text{Co}_{0.5}\text{VO}_4$ is 100

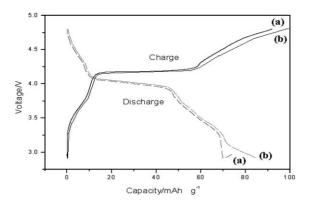


Fig. 3. First-charge/discharge curves of uncoated (a) and coated (b) $LiNi_{0.5}Co_{0.5}VO_4$.

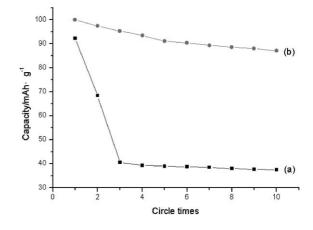


Fig. 4. Capacity of the first ten cycles of uncoated (a) and coated (b) $LiNi_{0.5}Co_{0.5}VO_4$.

mAh/g, decreasing to 87 mAh/g after ten cycles; its cycling efficiency is 87%. It is shown that the specific capacity and cycling performance of $\text{LiNi}_{0.5}\text{Co}_{0.5}\text{VO}_4$ are improved significantly. The reason for this can be that contact area and side reactions between $\text{LiNi}_{0.5}$ Co_{0.5}VO₄ and the electrolyte are effectively reduced through the surface modification by SiO₂. The structural stability of the electrochemically active intercalation compound $\text{LiNi}_{0.5}\text{Co}_{0.5}\text{VO}_4$ can thus effectively be engineered by the artificial formation of a thin SiO₂ coating; the mechanism causing this improved performance needs to be further identified.

4. Conclusions

An amorphous SiO₂ film has been coated onto the surface of LiNi_{0.5}Co_{0.5}VO₄ cathode particles by the sol-gel method using Si(CH₂CH₃)₄. This surface modification improves specific capacity and cycling performance by the SiO₂ layer reducing the contact area and side reactions between LiNi_{0.5}Co_{0.5}VO₄ and the electrolyte, thus providing structural stability of electrochemically active intercalation compound LiNi_{0.5}Co_{0.5}VO₄.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 50172036),

the Teaching and Research Award Program for Outstanding Young Professors in Higher Education Institute, MOE, P.R. China and the Science Fund for Distinguished Young Scholars of Hubei Province.

References

- [1] J. Cho, Y.J. Kim, B. Park, Solid State Ionics 138 (2001) 221.
- [2] L.Q. Mai, Z.G. Zou, H.Y. Chen, Mater. Rev. 14 (2000) 32.
- [3] K. Brandt, Solid State Ionics 69 (1994) 173.
- [4] W. Chen, Q. Xu, Y.S. Hu, L.Q. Mai, Q.Y. Zhu, J. Mater. Chem. 12 (2002) 1926.
- [5] J. Cho, Y.J. Kim, B. Park, J. Electrochem. Soc. 148 (2001) A1110.
- [6] Z.G. Zou, L.Q. Mai, H.Y. Chen, J. Wuhan Univ. Tech Mater. Sci. 16 (2001) 6.

- [7] K. Ozawa, Solid State Ionics 69 (1994) 212.
- [8] P. Arora, R.E. White, M. Doyle, J. Electrochem. Soc. 145 (1998) 3647.
- [9] G.G. Amatucci, A. Blayr, C. Sigala, Solid State Ionics 104 (1997) 13.
- [10] E. Eosjo, Y. Toshikazu, K. Akinori, J. Electrochem. Soc. 147 (2000) 1291.
- [11] J. Cho, Y.J. Kim, B. Park, Chem. Mater. 12 (2000) 3788.
- [12] J. Cho, Y.J. Kim, B. Park, J. Electrochem. Solid St. 4 (2001) A159.
- [13] J. Cho, Y.J. Kim, T.J. Kim, Chem. Mater. 13 (2001) 18.
- [14] G.T.K. Fey, K.S. Chen, J. Power Sources 81 (1999) 467.
- [15] G.T.K. Fey, K.S. Wang, S.M. Yang, J. Power Sources 68 (1997) 549.
- [16] D.F. Wang, Applications of X-ray Photoelectron Spectroscopy in Research of Non-Metallic Materials, Wuhan University of Technology Press, Wuhan, 1994, p. 195.